Как работает радар

Как работает радар

В настоящее время радары используются повсеместно, хотя это и незаметно невооруженным взглядом. Службы управлением воздушным движением используют радар, чтобы отслеживать самолеты и на земле, и в воздухе, а также руководить ими для плавной посадки. Автоинспекторы используют радар для определения скорости проезжающих автомобилистов. NASA использует радары, чтобы следить за спутниками и «космическим мусором», а также обеспечивать приземление и маневрирование космических объектов. Военные используют их для обнаружения противника и наведения оружия. Метеорологи используют радары для отслеживания бурь, ураганов и торнадо. Радары присутствуют на всех дверях, которые открываются автоматически. Очевидно, что радар является чрезвычайно полезной технологией.

Когда люди используют радар, они, как правило, пытаются выполнить одно из трех действий:

1. Обнаружить присутствие объекта на расстоянии. Радар может также быть использован для обнаружения как подвижных объектов, типа самолета или автомобиля, так и неподвижных объектов, и даже объектов, расположенных под землей. В некоторых случаях радар может идентифицировать объект, например, может определить тип обнаруженного им самолета.

2. Определить скорость объекта. Это является причиной использования радара автоинспекторами и системами наведения оружия.

3. Создать карту — орбитальные спутники используют технологию Synthetic Aperture Radar для создания подробных топографических карт поверхности Земли.

Все три этих мероприятия могут быть реализованы с помощью двух физических эффектов: эха и Доплеровского сдвига. Принцип действия этих двух эффектов легко понять потому, что ваши уши слышат звуковое эхо и ощущают акустический эффект Доплеровского сдвига каждый день. Радар позволяет использовать эти же методы, только с помощью радиоволны.

 

Эхо

Эхо — это акустический эффект, который вы ощущаете почти постоянно. Если крикнуть в колодец, эхо вернется некоторое время спустя. Чем глубже будет колодец, тем дольше будет временная задержка между вашим криком и вернувшимся эхом. Эхо возникает потому, что некоторые звуковые волны от вашего крика отражаются от поверхности воды на дне колодца и возвращаются обратно к вашим ушам. Если вы засечете время, через которое вернулось эхо и если вы знаете скорость звука, вы можете рассчитать глубину колодца довольно точно.

Эхо в горах

Хорошо слышится эхо в горах. Звук голоса с минимальными потерями отражается от твердых камней и продолжает двигаться дальше, попутно вызывая многократное затухающее эхо.

Доплеровский сдвиг (Эффект Доплера)

Доплеровский сдвиг также широко распространен. Вы, наверное, ощущаете его ежедневно (часто не осознавая этого). Доплеровский сдвиг возникает, когда звук генерируется движущимся объектом или отражается от него. Доплеровский сдвиг может создавать звуковые удары.

Доплеровский сдвиг (Эффект Доплера)

Вот как можно объяснить Доплеровский сдвиг. Допустим, что автомобиль перемещается к вам с равномерной скоростью 60 километров в час, начинает сигналить с расстояния в один километр и сигналит в течение точно одной минуты. Вы услышите начало сигнала с трехсекундной задержкой.

Вот что происходит. Скорость звука в воздухе является постоянной. Для простоты расчета примем ее 1191,6 км/час (точное значение скорости определяется давлением воздуха, температурой и влажностью). Представьте себе, что машина находится ровно в 1 километре от вас и сигналит. Звуковые волны будут распространяться от автомобиля к вам со скоростью 1191,6 км/час. То есть, вы услышите сигнал через 1/1191,6 * 3600=3,02 секунды. Автомобиль, двигаясь с равномерной скоростью 60 км/час, преодолеет расстояние до вас в один километр ровно за одну минуту.

radar_dopler_23

Однако для вас звук будет длиться в течение 57 секунд, а не ровно одной минуты, поскольку, когда автомобиль окажется рядом с Вами через одну минуту, то звук начнет доходить до вас мгновенно. Автомобиль, с точки зрения водителя, сигналил в течение одной минуты, но так как автомобиль перемещался, то длительность минуты звука сжалась до 57 секунд с вашей точки зрения. В результате, то же самое число звуковых волн оказалось «упаковано» в меньшее количество времени. Поэтому их частота увеличена, и тон сигнала кажется вам выше, чем есть на самом деле. Когда автомобиль проезжает мимо вас и удаляется, процесс изменяется на противоположный и звук расширяется, достигая вас за большее время. Поэтому тон сигнала становится ниже естественного.

Вы можете объединить эхо и Доплеровский сдвиг  следующим образом — отсылать громкий звук к автомобилю, который движется к вам. Некоторые звуковые волны отразятся от автомобиля в виде эха. Поскольку автомобиль перемещается к вам, звуковые волны будут сжаты и у эха будет более высокий тон, чем у оригинального звука, который был послан. Если вы измерите высоту звука эха, то сможете определить, как быстро автомобиль движется.

Звуковой удар

Поскольку мы рассматриваем соотношение звука и движения, мы можем также попутно понять, что такое звуковой удар. Допустим, самолет перемещается к вам со скоростью звука – 1191,6 км/час. Звуковые волны, произведенные самолетом, не могут пойти быстрее, чем скорость звука, таким образом и самолет, и его звук приближаются к вам со скоростью 1191,6 км/час. Отсюда следует, что вы сначала ничего не слышите, но видите, что самолет очень быстро приближается. В тот самый момент, когда самолет поравняется с вами, сразу прибудет и весь его звук в виде очень громкого хлопка. Это и есть звуковой удар. Самый мощный звуковой удар в 7000 Па был зафиксирован при измерении параметров полета истребителя F4 на высоте 30 метров.

 

Принцип действия радара

Мы видели, что звуковое эхо может быть использовано для определения расстояния до объекта, и мы видели также, что можно использовать доплеровский сдвиг эха, чтобы определить, насколько быстро какой-то объект движется. Поэтому существует возможность для создания «звукового радара». Такой радар называется «сонар» и используется подводными лодками, а так же противолодочными кораблями для поиска подводных лодок. Можно было бы использовать те же принципы со звуком в воздухе, но у звука в воздухе есть несколько проблем:

1. Звук в воздухе распространяется не очень далеко, не более полутора-двух километров.

2. Только глухой человек не может хорошо расслышать звук, поэтому звуковой радар обязательно беспокоил бы окружающих людей. Однако можно устранить эту проблему с помощью применения ультразвука.

3. Поскольку звуковое эхо может быть очень слабым, вполне вероятно, что его трудно будет обнаружить.

Поэтому радар использует радиоволны вместо звука. Радиоволны распространяются далеко, невидимы и неслышимы для человека, и легко обнаруживаются даже тогда, когда они ослабевают.

Радар в руках сотрудника ДПС Военная радиолокационная станция

Давайте рассмотрим типичный радар, предназначенный для обнаружения самолетов в полете. Радар имеет передатчик и посылает короткий, высокой интенсивности, пакет высокочастотных радиоволн. Передача пакета может длиться миллисекунды. После этого радар выключает свой передатчик, включает приемник и слушает эхо. Затем измеряется время возврата эха, а также его Доплеровский сдвиг. Радиоволны распространяются со скоростью света, примерно 300 метров за микросекунду, поэтому если радар имеет высокоточные часы, он может очень точно измерить расстояние до самолета. С помощью специального оборудования для обработки сигналов, радар может также измерить Доплеровский сдвиг и очень точно определить скорость самолета.

У наземных радаров существует гораздо больше возможных помех. Когда радар автоинспектора испускает импульс, он отражается от всех видов объектов —  заборов, зданий, деревьев. Самый простой способ удалить такого рода помехи — определить, что у них нет Доплеровского сдвига. Такой радар предназначен только для определения Доплеровского сдвига, поэтому луч радара является сконцентрированным, попадающим только на один автомобиль.

В последние годы для определения скорости автомобилей применяются очень точные лазерные технологии, использующие свет вместо звука или радиоволн.

Оставить комментарий

Ваш email не будет опубликован.

*


1 × 5 =


Top
Follow

Get every new post delivered to your Inbox

Join other followers